강의노트 z-변환 정리와 속성

강의노트 • 조회수 18 • 댓글 0 • 작성 2일 전 • 수정 1일 전  
  • z-변환 정리
  • z-변환 속성

정리와 속성

f(t) f(t)함수의 이산화된 값은 f(kT)=k=0f(kT)δ(tkT)f^{ * }(kT)= \sum_{k=0}^{\infty} f(kT)\delta(t-kT)이고, z-변환은 Z(f(t))=F(z)Z(f^{ * }(t)) = F(z)이다.

α,β\alpha, \beta는 상수이다.

상수 곱

Z(αf(t))=k=0αf(kT)δ(tkT)=αk=0f(kT)δ(tkT)=αZ(f(t))=aF(z) Z(\alpha f(t)) = \sum_{k=0}^{\infty}\alpha f(kT)\delta(t-kT) = \alpha \sum_{k=0}^{\infty} f(kT)\delta(t-kT) =\alpha Z(f(t)) = a F(z)

선형성

f(t)=αx(t)+βg(t)undefinedztransformF(z)=αX(z)+βG(z)f(t) = \alpha x(t) + \beta g(t) \xrightarrow{z-transform} F(z) = \alpha X(z) + \beta G(z)

지수함수 곱

Z[eatf(t)]=F(zeaT) Z[ e^{-at}f(t) ] = F(ze^{aT})

증명 :

Z[eatf(t)]=k=0eatf(kT)zk=k=0f(kT)(zeaT)k=F(zeaT) Z[ e^{-at}f(t) ] = \sum_{k=0}^{\infty} e^{-at} f(kT) z^{-k} = \sum_{k=0}^{\infty}f(kT)(ze^{aT})^{-k}=F(ze^{aT})

이동

뒤로 이동(Backward shift)

Z[f(tnT)]=znF(z)Z[f(t-nT)] = z^{-n}F(z)

증명 :

Z[f(t)]=f(0)+f(T)z+f(2T)z2+... Z[f(t)] = f(0) + \dfrac{f(T)}{z}+ \dfrac{f(2T)}{z^2}+...

실시간 nT샘플이 뒤로 이동하면

Z[f(tnT)]=f(0)zn+f(T)zn+1+f(2T)zn+2+...=1zn(f(0)+f(T)z+f(2T)z2+...)=znF(z) Z[f(t-nT)] = \dfrac{f(0)}{z^n} + \dfrac{f(T)}{z^{n+1}}+ \dfrac{f(2T)}{z^{n+2}}+... = \dfrac{1}{z^n} \left( f(0) + \dfrac{f(T)}{z} + \dfrac{f(2T)}{z^{2}}+... \right) = z^{-n} F(z)

앞으로 이동(Forward shift)

Z[f(t+nT)]=znF(z)znf(0)zn1f(T)zn2f(2T)...zf(n1) Z[f(t+nT)]=z^n F(z) - z^n f(0) - z^{n-1}f(T) - z^{n-2}f(2T) - ... - z f(n-1)

증명 :

Z[f(t+T)]=f(T)+f(2T)z+f(3T)z2+... Z[f(t+T)] = f(T) + \dfrac{f(2T)}{z} + \dfrac{f(3T)}{z^2}+ ...

1zZ[f(t+T)]=f(T)z+f(2T)z2+f(3T)z3+... \dfrac{1}{z}Z[f(t+T)] = \dfrac{f(T)}{z} + \dfrac{f(2T)}{z^2} + \dfrac{f(3T)}{z^3}+ ...

1zZ[f(t+T)]+f(0)=f(0)+f(T)z+f(2T)z2+f(3T)z3+... \dfrac{1}{z}Z[f(t+T)] + f(0) =f(0)+ \dfrac{f(T)}{z} + \dfrac{f(2T)}{z^2} + \dfrac{f(3T)}{z^3}+ ...

1zZ[f(t+T)]+f(0)=F(z) \dfrac{1}{z}Z[f(t+T)] + f(0) =F(z)

Z[f(t+T)]=zF(z)zf(0) Z[f(t+T)] =zF(z) - zf(0)

비슷한 방법으로

Z[f(t+2T)]=zF(z+T)zf(1)=z2F(z)z2f(0)zf(T) Z[f(t+2T)] =zF(z+T) - zf(1) = z^2 F(z) - z^2 f(0) -zf(T)

초기값

f(0)=limt0f(t)=limzF(z) f(0) = \lim_{t \to 0} f(t) = \lim_{z \to \infty} F(z)

증명 :

F(z)=f(0)+f(T)z+f(2T)z2+...F(z) = f(0) + \dfrac{f(T)}{z}+ \dfrac{f(2T)}{z^2}+...

limzF(z)=f(0)\lim_{z \to \infty} F(z) = f(0)

최종값

f()=limtf(t)=limz1[(z1)F(z)] f(\infty ) = \lim_{t \to \infty} f(t) = \lim_{z \to 1} \left[ (z-1) F(z) \right]

증명 :

Z[f(t)]=F(z)=k=0f(kT)zk(1)\tag{1}Z[f(t)] = F(z) = \sum_{k=0}^{\infty} f(kT) z^{-k}

Z[f(k+T)]=zF(z)zf(0)=k=0f(k+T)zk(2)\tag{2} Z[f(k+T)] = zF(z)-zf(0) = \sum_{k=0}^{\infty} f(k+T) z^{-k}

식(1)에서 식(2)를 빼면 극한을 취한다.

limz1[(z1)F(z)zf(0)]=limz1[k=0f(k+T)zkk=0f(kT)zk]=k=0limz1[(f(k+T)f(k))zk](3)\tag{3} \lim_{z \to 1} [(z-1)F(z) -zf(0)] = \lim_{z \to 1} [\sum_{k=0}^{\infty} f(k+T) z^{-k} -\sum_{k=0}^{\infty} f(kT) z^{-k}] = \sum_{k=0}^{\infty} \lim_{z \to 1} \left[ (f(k+T) - f(k)) z^{-k} \right]

limz1[(z1)F(z)zf(0)]=f()f(0)(4)\tag{4} \lim_{z \to 1} [(z-1) F(z) - zf(0)] = f(\infty) - f(0)

limz1[(z1)F(z)]=f()(5)\tag{5} \lim_{z \to 1}[(z-1)F(z)] = f(\infty)

첫 글입니다.
마지막 글입니다.
댓글
댓글로 소통하세요.