상태 변수 방정식과 시스템 응답
u(t)=0인 경우
(1)
x˙(t) = Ax(t)
x(t) = eAt x(0)
이면
eAt = I + At + 2A2 t2 + … + n!An tn +…
dtdeAt = A + A2t + … +(n − 1)! An tn−1 + …= A (I + At + 2A2t2 +… ) = AeAt
x˙(t) = AeAt x(0) = Ax(t)
sX(s) − x(0) = AX(s)
X(s) = (sI − A)−1 x(0)
x(t) = L−1 [X(s)] = L−1 [(sI − A)−1]x(0) (1)과 비교하면
eAt = L−1 [(sI − A)−1] = Φ(t)→ 상태 천이 행렬
L[eAt] = (sI − A)−1
x(t) = eAt x(0)=Φ(t)x(0)
상태 천이 행렬 성질
- Φ(0)=eA0=e0=I
- Φ−1(t)=(eAt)−1=e−At=eA(−t)=Φ(−t)
- Φ(t2−t0)=eA(t2−t0)=eAt2e−At0(eAt1e−At1)=(eAt2e−At1)(eAt1e−At0)=eA(t2−t1)eA(t1−t0)=Φ(t2−t1)Φ(t1−t0)
- (Φ(t))k=Φ(kt)
u(t)=0인 경우
x˙(t) − Ax(t)=Bu(t)
e−At [x˙(t)−Ax(t)]=e−AtBu(t)
dtd[e−Atx(t)] = e−Atx˙(t)−Ae−Atx(t)=e−At[x˙(t)−Ax(t)]
dtd[e−Atx(t)]= e−AtBu(t)
e−Atx(t)−x(0)=∫0t e−AtBu(τ)dτ
x(t)=eAtx(0)+∫0t eA(t−τ)Bu(τ)dτ=Φ(t)x(0)+∫0t Φ(t−τ)Bu(τ)dτ
x(t0)=eAt0x(0)+∫0t0 eA(t0−τ)Bu(τ)dτ=Φ(t0)x(0)+∫0t0 Φ(t0−τ)Bu(τ)dτ
x(t)=eAte−At0eAt0x(0)+∫0t eA(t−τ)eA(t0−t0)Bu(τ)dτ=eA(t−t0)eAt0x(0)+∫0t0 eA(t−t0)eA(t0−τ)Bu(τ)dτ+∫t0t eA(t−τ)Bu(τ)dτ=eA(t−t0)(eAt0x(0)+∫0t0eA(t0−τ)Bu(τ)dτ)+∫t0t eA(t−τ)Bu(τ)dτ=eA(t−t0)x(t0)+∫t0t eA(t−τ)Bu(τ)dτ=Φ(t−t0)x(t0)+∫t0t Φ(t−τ)Bu(τ)dτ=x(t−t0)
y(t) = Cx(t)+Du(t)=CeA(t−t0)x(t0)+C∫t0t eA(t−τ)Bu(τ)dτ+Du(t)=CΦ(t−t0)x(t0)+C∫t0tΦ(t−τ)Bu(τ)dτ+Du(t)
로그인 하면 댓글을 쓸 수 있습니다.