예제 Nyquist 선도 그리기 2

예제 • 조회수 580 • 댓글 0 • 수정 1년 전  
  • 그리기
  • 나이퀴스트선도

나이퀴스트 선도 그리기

  • G(s)H(s)=Ks(s+2)(s+10) G(s)H(s)= \dfrac{K}{s(s+2)(s+10)}

  1. GH(s) GH(s)s=jω s = j\omega 를 대입 :

GH(jω)=Kjω(jω+2)(jω+10) GH(j\omega) = \dfrac{K}{j\omega(j\omega+2)(j\omega+10)}

  1. ω0+ \omega \to 0^+ (A점에 해당)

GH(j0)=Kj0(j0+2)(j0+10)=(90) GH(j0) = \dfrac{K}{j0(j0+2)(j0+10)}=\infty \angle(-90^\circ)

  1. ω+ \omega \to + \infty (B점에 해당)

GH(j)=Kj(j+2)(j+10)=0(270) GH(j\infty) = \dfrac{K}{j\infty(j\infty+2)(j\infty+10)}=0 \angle (-270^\circ)

  1. s=Rjθ{Rθ90090 s = R^{j \theta} \vert_{\begin{cases} R\to \infty \\ \theta \to 90^\circ \to 0 \to -90^\circ \end{cases}} (C점에 해당)

GH(Rjθ)=KRjθ(Rjθ+2)(Rjθ+10)=0(3θ)=0(2700270) GH(R^{j\theta}) = \dfrac{K}{R^{j\theta}(R^{j\theta}+2)(R^{j\theta}+10)}=0 \angle (-3 \theta)= 0\angle(-270^\circ \to 0^\circ \to 270^\circ )

  1. ω \omega \to -\infty (D점에 해당)

GH(j)=Kj(j+2)(j+10)=0(90) GH(-j\infty) = \dfrac{K}{-j\infty(-j\infty+2)(-j\infty+10)}=0 \angle (-90^\circ)

  1. ω0 \omega \to 0^- (E점에 해당)

GH(j0)=Kj0(j0+2)(j0+10)=(90) GH(j0^{-}) = \dfrac{K}{j0^-(j0^-+2)(j0^-+10)} = \infty \angle(90^\circ)

  1. s=rjθ{r0θ90090 s = r^{j \theta} \vert_{\begin{cases} r\to 0 \\ \theta \to -90^\circ \to 0 \to 90^\circ \end{cases}} (F점에 해당)

GH(rjθ)=Krjθ(rjθ+2)(rjθ+10)=(θ)=(90090) GH(r^{j\theta}) = \dfrac{K}{r^{j\theta}(r^{j\theta}+2)(r^{j\theta}+10)}=\infty \angle (-\theta)= \infty \angle(90^\circ \to 0^\circ \to -90^\circ )

  1. 실수축과의 교차점 :

GH(jω)=Kjω(jω+2)(jω+10)=K12ω2+jω(20ω2)12ω2jω(20ω2)12ω2jω(20ω2)=12Kω2jKω(20ω2)144ω4+ω2 \begin{aligned} GH(j\omega) &= \dfrac{K}{j\omega(j\omega+2)(j\omega+10)}\\ &=\dfrac{K}{-12\omega^2+j\omega(20-\omega^2)} \cdot \dfrac{-12\omega^2-j\omega(20-\omega^2)}{-12\omega^2-j\omega(20-\omega^2)} \\ &= \dfrac{-12K\omega^2-jK\omega(20-\omega^2)}{144\omega^4+\omega^2} \end{aligned}

Kω(20ω2)=0ω=20 -K\omega(20-\omega^2)=0 \Rightarrow \omega=\sqrt{20}

GH(j20)=12K202144204+202=240K57620GH(j\sqrt{20})=\dfrac{-12K\sqrt{20}^2}{144\sqrt{20}^4+\sqrt{20}^2}= \dfrac{-240K}{57620}

K=1K=1

k=250 k=250

이전 글
다음 글
댓글
댓글로 소통하세요.