식(1)을 이용하여 라플라스 역변환을 구할 수 있다.
f(t)=L−1[F(s)]=2πj1∫σ−j∞σ+j∞f(s)estds(1)
어려운 적분을 피해 F(s)를 부분 분수로 분해(partial fraction expansion)하고 라플라스 변환 테이블 이용하여 f(t)를 구한다.
부분 분수에 의한 라플라스 역변환
실수 단근인 경우
G(s)=(s+p1)(s+p2)⋯(s+pn)N(s)=s+p1K1+s+p2K2+⋯+s+pnKn
Ki=s→−pilim(s+pi)G(s)
L−1[G(s)]=L−1[s+p1K1]+L−1[s+p2K2]+⋯+L−1[s+pnKn]=K1e−p1t+K2e−p2t+⋯+Kne−pnt
[예] F(s)=s3+8s2+15s10
[풀이]
F(s)=s3+8s2+15s10=s(s+3)(s+5)10=sk1+s+3k2+s+5k3
k1=s→0lims⋅s(s+3)(s+5)10=1510=32
k2=s→−3lim(s+3)⋅s(s+3)(s+5)10=(−3)(−3+5)10=−35
k3=s→−5lim(s+5)⋅s(s+3)(s+5)10=(−5)(−5+3)10=1
F(s)=32s1−35s+31+1s+51
∴f(t)=32u(t)−35e−3t+1e−5t
공액 복소근을 포함한 경우
G(s)=[(s+α)2+ω2](s+p3)⋯(s+pn)N(s)=(s+α)2+ω2sA+B+s+p3K3+⋯+s+pnKn
- Ki는 위에서 구한 방법으로 구하고
- A,B는 다음과 같이 구한다.
s→−α+jωlimsA+B=s→−α+jωlim[(s+α)2+ω2]G(s)
[예] F(s)=s3+2s2+2s3
[풀이]
F(s)=s3+2s2+2s3=s((s+1)2+12)3=sk1+s((s+1)2+12)sA+B
k1=s→0lims⋅s((s+1)2+12)3=(0+1)2+13=23
s→−1+j1limsA+B=s→−1+j1lim[(s+1)2+12]s((s+1)2+12)3=−1+j13⋅−1−j1−1−j1=−1.5−1.5j
(−1+j1)A+B=−1.5−1.5j
{−A+BA=−1.5=−1.5
∴A=−1.5,B=−3
F(s)=s1.5−1.5⋅(s+1)2+121s+2=s1.5−1.5⋅[(s+1)2+12s+1+(s+1)2+121]
∴f(t)=1.5u(t)−1.5[cos(t)e−t+sin(t)e−t]
다중근인 경우
G(s)=(s+p1)m(s+p2)⋯(s+pn)N(s)=(s+p1)mK11+(s+p1)m−1K12+⋯+(s+p1)K1m+s+p2K2+⋯+s+pnKn
K11=s→−pilim(s+pi)mG(s)
K12=s→−pilimdsd[(s+pi)mG(s)]
⋮
K1m=s→−pilim(m−1)!1dsm−1dm−1[(s+pi)mG(s)]
[예] F(s)=s3(s+1)2s+2
[풀이]
F(s)=s3(s+1)2s+2=s3k11+s2k12+sk13+(s+1)2k21+(s+1)k22
k11=s→0lims3⋅s3(s+1)2s+2=2
k12=s→0limdsd[(s+1)2s+2]=s→0lim[(s+1)41⋅(s2+2s+1)−(s+2)⋅(2s+2)]=s→0lim[(s+1)4s2+2s+1−2s2−6s−4]=−3
k13=s→0limdsd[(s+1)3−(s+3)]=s→0lim[(s+1)6−1⋅(s+1)3+(s+3)3(s2+2s+1)]=8
k21=s→−1lim(s+1)2⋅s3(s+1)2s+2=−1
k22=s→−1limdsd[s3s+2]=s→−1lim[s61⋅(s3)−(s+2)⋅(3s2)]=s→−1lim[(s)6−2s3−6s2]=−4
∴F(s)=s3(s+1)2s+2=s32+s2−3+s8+(s+1)2−1+(s+1)−4
f(t)=L−1F(s)=t2−3t+8u(t)−te−t−4e−t
라플라스 변환에 의한 미분 방정식의 해법
dt2d2y+5dtdy+6y=us(t);y(0)=1,y(1)(0)=0
dt2d2c(t)+5dtdc(t)+6c(t)=10u(t);c(0)=0
dt2d2y+3dtdy+2y=5;y(0)=−1,y(1)(0)=2
Login to write a comment.